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Abstract

Given a large un-transcribed corpus of speech utterances, we

address the problem of how to select a good subset for word-

level transcription under a given fixed transcription budget. We

employ submodular active selection on a Fisher-kernel based

graph over un-transcribed utterances. The selection is theoreti-

cally guaranteed to be near-optimal. Moreover, our approach is

able to bootstrap without requiring any initial transcribed data,

whereas traditional approaches rely heavily on the quality of an

initial model trained on some labeled data. Our experiments

on phone recognition show that our approach outperforms both

average-case random selection and uncertainty sampling signif-

icantly.

Index Terms: Transcription, labeling, submodularity, submod-

ular selection, active learning, sequence labeling, phone recog-

nition, speech recognition

1. Introduction

In automatic speech recognition and many other language ap-

plications, unlabeled data are abundant but labels (e.g., tran-

scriptions) are expensive and time-consuming to acquire. For

example, large amounts of speech data can easily be obtained

via telephone calls, and via modern voice-based applications

such as Microsoft’s Tellme and Google’s voice search. Ideally,

it would be possible to label all of this data for use as a train-

ing set in a speech recognition system, as aptly conveyed by

the well known phrase “there is no data like more data.” Un-

fortunately, this would be impractical given the ever increasing

amount of available unlabeled data. Accurate phonetic tran-

scription of speech utterances requires phonetic training and

even then it may take a month to annotate 1 hour of speech

[1], not to mention the difficulty of transcribing at the articula-

tory level. Partly due to this, such low-level transcription efforts

have been sidelined by the community in favor of word-level

transcriptions. But even word level transcriptions are time con-

suming (about 10 times real time), especially for conversational

spontaneous speech. This problem is particularly acute for un-

derrepresented languages or dialects with few speakers, where

linguistic experts are even harder to find.

In this paper, we address the following question: given lim-

ited resources (time and/or budget), how can we optimally se-

lect a training data subset for transcription such that the result-

ing system has optimal performance. In fact, this is a well-

known problem and goes by the name of batch active learning,

where a subset of data that is most informative and represen-

tative of the whole is selected for labeling. Often, examples

are queried in a greedy fashion according to an informativeness
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measure used to evaluate all examples in the pool. Two popu-

lar strategies for measuring informativeness include uncertainty

sampling and the query-by-committee approach. Uncertainty

sampling [2] is the simplest and most commonly used strategy.

In this framework, an initial system is trained typically using

a small set of labeled examples. Then, the system examines

the rest of the unlabeled examples, and queries examples that it

is most uncertain about. The measurement of uncertainty can

either be entropy [3, 4, 5] or a confidence score [6, 7, 8, 3].

Query-by-committee [9, 10, 11] also starts with labeled data. A

set of distinct models are trained as committee members. Each

committee member is then allowed to vote on the labellings of

the unlabeled examples. The most informative example is taken

as the one the committee most disagrees about.

It has been shown that both uncertainty sampling and

query-by-committee may fail when they tend to query outliers,

which is the main motivating factor for other strategies like es-

timated error reduction [12]. The problem is that outliers might

have high uncertainty (or a committee might find them contro-

versial) but they are not good surrogates for “typical” samples.

Indeed, an ideal selection strategy should choose a subset of

samples that, when considered together, constitute in some form

a good representation of the entire training data set. Methods

such as [13, 14, 15, 3] address this problem, all of which have

been shown to be superior to methods that do not consider rep-

resentativeness measures. Our approach herein also belongs to

this category. In particular, we use Fisher kernel (Section 4)

to build a graph over the unlabeled sample sequences, and op-

timize submodular functions (to be defined) over the graph to

find the most representative subset. Note that our Fisher ker-

nel is over an unsupervised generative model, which enables us

to bootstrap our active learning approach without needing any

initial labeled data, yet we achieve good performance (see Sec-

tion 5) perhaps because of the approximate optimality of our

submodular procedures. This approach portends well to under-

represented languages for which an initial labeled set might be

unavailable.

Despite pre-existing extensive studies of active learning,

there is relatively little work on active learning for sequence la-

beling. Several methods have been proposed, most of which are

based either on uncertainty sampling or query-by-committee.

In [11, 16, 6], confidence scores from a speech recognizer are

used to indicate the informativeness of speech utterances. Ac-

tive learning methods in [17] select the most uncertain exam-

ples based on an EM-style algorithm for learning HMMs from

partially labeled data. In [18], several objective functions and

algorithms are introduced for active learning in HMMs. Sev-

eral new query strategies for probabilistic sequence models are

introduced in [3] and an empirical analysis is conducted on a va-

riety of benchmark datasets. Our approach can be distinguished

from these methods in that we select the most representative
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subset in a submodular framework, where submodularity the-

oretically guarantees that the selection problem can be solved

efficiently and near-optimally (see Section 2, Theorem 1 and

Theorem 2). Submodularity has already been successfully used

in active learning tasks. Robust submodular observation selec-

tion is explored in [19]. In [15], the authors relate Fisher infor-

mation matrices to submodular functions so that the optimiza-

tion can be done efficiently and effectively. To the best of our

knowledge, our approach is the first work that incorporates sub-

modularity for active learning in sequence labeling tasks such

as speech recognition.

2. Background

2.1. Submodularity

Consider a set function z : 2V → R, which maps subsets S ⊆
V of a finite set V to real numbers. Intuitively, V is the set of

all unlabeled utterances, and the function z(·) scores the quality

of any chosen subset. z(·) is called submodular[20] if for any

S, T ⊆ V ,

z(S ∪ T ) + z(S ∩ T ) ≤ z(S) + z(T ) (1)

An equivalent condition for submodularity is the property of

diminishing returns. That is for any R ⊆ S ⊆ V and s ∈ V ,

z(S ∪ {s}) − z(S) ≤ z(R ∪ {s}) − z(R) (2)

Intuitively, this means that adding an element s helps at least as

much as if we add it to a smaller set R than if we add it to the

superset S. Submodularity is the discrete analog of convexity

[20]. As convexity makes continuous functions more amenable

to optimization, submodularity plays an essential role in combi-

natorial optimization. Common submodular functions appear in

many important settings including graph-cut [21], set covering

[22], and facility location problems [23].

2.2. Submodular Selection

We want to select a good subset S of training data V that max-

imizes some objective function, such that the size of S is no

larger than K (our budget). That is, we wish to compute:

max
S⊆V

{z(S) : |S| ≤ K} (3)

While NP hard, this problem can be approximately solved us-

ing a simple greedy forward-selection algorithm. The algorithm

starts with S = ∅, and iteratively adds the element s ∈ V \ S
that maximally increases the objective function value, i.e.,

s = argmaxs∈V \S z(S ∪ {s}) (4)

until |S| = K. Actually, when z(·) is a nondecreasing and

normalized submodular set function, this simple greedy algo-

rithm performs near-optimally as guaranteed by the following

theorems.

Theorem 1. Nemhauser et al. 1978 [24]. If submodular func-

tion z(·) satisfies: i) nondecreasing: for all S1 ⊆ S2 ⊆ V ,

z(S1) ≤ z(S2); ii) normalized: z(∅) = 0, then the set S∗
G

obtained by the greedy algorithm is no worse than a constant

fraction (1 − 1/e) away from the optimal value, i.e.,

z(S∗
G) ≥

(

1 −
1

e

)

max
S⊆V :|S|≤K

z(S)

The greedy algorithm, moreover, is likely to be the best we

can do in polynomial time, unless P = NP .

Theorem 2. Feige 1998 [22] Unless P=NP, there is no

polynomial-time algorithm that guarantees a solution S∗ with

z(S∗) ≥ (1 − 1/e + ǫ) max
|S|≤K

z(S), ǫ > 0 (5)

3. Submodular Selection

Batch active learning problems are often cast as a data subset

selection, where the active learner can ask for the labels of the

subset of data of size within budget, and that is most likely

to yield the most accurate classifier. Problem (3) can also be

viewed as a data selection problem. Suppose we have a set of

unlabeled training examples V = {1, 2, ...,N}, where certain

pairs (i, j) are similar and the similarity of i and j is measured

by a nonnegative value wi,j . We can represent the unlabeled

data using a graph G = (V,E), with nonnegative weights wi,j

associated with each edge (i, j). The data selection problem is

to find a subset S that is most representative of the whole set

V , given the constraint |S| ≤ K. To measure how “representa-

tive” S is of the whole set V , we introduce several submodular

set functions.

3.1. Submodular Set Functions

Our first objective is the uncapacitated facility location function

[23]:

Facility location: z1(S) =
∑

i∈V

max
j∈S

wi,j (6)

It measures the similarity of S to the whole set V . We can also

measure the similarity of S to the remainder, i.e., the graph cut

function:

Graph cut: z2(S) =
∑

i∈V \S

∑

j∈S

wi,j (7)

Both of these functions are submodular as seen by verifying

inequality 2 (proof omitted due to space limitations).

In order to apply Theorem 1, the objective function should

also satisfy the nondecreasing property. Obviously, the facility

location objective function is nondecreasing. For the graph cut

objective, the increment of adding k into S is

z2(S ∪ {k}) − z2(S) =
∑

i∈V \S

wi,k −
∑

j∈S∪{k}

wk,j

which is not always nonnegative. Fortunately, the proof of The-

orem 1 does not use the monotone property for all possible sets

[24][19, page 58]. The graph cut can also meet the conditions

for Theorem 1 if |S| ≪ |V |, which is usually the case in appli-

cations where we have a large amount of data but only limited

resources for labeling.

With the above objectives, we can use the greedy algo-

rithm to solve the data selection problem efficiently and near-

optimally. The greedy algorithm for submodular data selection

with the facility location objective is described in Algorithm 1,

where ρi = maxj∈S wi,j is updated to optimize the running of

the algorithm. The graph-cut objective algorithm is similar and

is omitted to conserve space.



Algorithm 1 Greedy algorithm for facility location objective

1: Input: G = (V,E) with weights wi,j on edge (i, j); K:

the number of examples to be selected

2: Initialization: S = ∅, ρi = 0, i = 1, ...,N where N =
|V |

3: while |S| ≤ K do

4: k∗ = arg maxk∈V \S

∑

i∈V,(i,k)∈E (max {ρi, wi,k} − ρi)
5: S = S ∪ {k∗}
6: for all i ∈ V do

7: ρi = max {ρi, wi,k∗}
8: end for

9: end while

4. Fisher Kernel

We express the pairwise “similarity” between the utterances

i and j in terms of kernel function κ(i, j) so that wi,j =
κ(i, j). Since the examples are sequences with possibly differ-

ent lengths, we use the Fisher kernel [25], which is applicable to

variable length sequences. Consider a generative model (e.g., a

hidden Markov models, or more generally, a dynamic Bayesian

network (DBN)) with parameters θ that models the generation

process of the sequence. Denote Xi = (xi,1, . . . , xi,Ti
) as the

ith feature sequence with length Ti. Then a fixed length vector,

known as the Fisher score, can be extracted as:

Ui =
∂

∂θ
log p(Xi|θ) (8)

Each component of Ui is a derivative of the log-likelihood score

for the sequence Xi with respect to a particular parameter —

the Fisher score is thus a vector having the same length as the

number of parameters θ. The computation of gradients in Eq. 8

in the context of DBNs is described in detail in [26].

Given Fisher scores, different sequences with different

lengths may be represented by fixed-length vectors, so we can

easily define several Fisher kernel functions to measure pair-

wise similarity, e.g., cosine similarity, radial-basis function

(RBF) kernel similarity, or as shown below, the negative ℓ1 sim-

ilarity:

Negative ℓ1 norm: κ(i, j) = −||Ui − Uj ||1 (9)

The generative model that is used to generate the Fisher score

may contain several types of parameters (i.e., discrete condi-

tional probability tables and continuous Gaussian parameters),

and the values associated with different types of parameters may

have quite different numeric dynamic ranges. In order to re-

duce the heterogeneity within the Fisher score vector, all our

experiments apply the following global variance normalization

to produce the final Fisher score vectors U ′
i :

U ′
i = (diag(Σ))−

1

2 · (Ui − Ū) (10)

where Ū = 1
N

∑N

i=1 Ui and Σ = 1
N

∑N

i=1(Ui−Ū)T (Ui−Ū)

5. Experiments

We evaluated our methods on a phone recognition task using

the TIMIT corpus. Random selection was used as a base-

line. Specifically, we randomly take p% of the TIMIT train-

ing set, where p = 2.5, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90. For

each subset, a 3-state context-independent (CI) hidden Markov

model (HMM) (implemented as a DBN) was trained for each

of the 48 phones. The number of Gaussian components in the
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Figure 1: Relative improvements over the average phone error

rate of random selection. No initial model scenario.

Gaussian mixture model (GMM) was optimized according to

the amount of training data available. The 48 phones were then

mapped down to 39 phones for scoring purposes following stan-

dard practice [27]. Recognition was performed using standard

Viterbi search without a phonetic language model (a language

model was not used here to emphasize the acoustic modeling

performance, and since this speeds up experimental turnaround

time by avoiding tedious language model scaling and penalty

parameter tuning when large random selection experiments are

performed). 100 trials of random selection experiments were

performed for each of the percentage numbers above. The aver-

age phone error rates (PER) were calculated and used as base-

line. The standard deviation was around 0.01 for small p and

about 0.005 for larger p. Apart from the data selection strategy,

experiments on uncertainty sampling and submodular selection

followed exactly the same setups as random selection.

Uncertainty sampling and submodular selection were eval-

uated under two scenarios. The first scenario we considered is

when there is no initial model available. In this scenario, uncer-

tainty sampling would typically randomly select a small portion

of the unlabeled data to label, and then train an initial model

using these randomly selected data. We did the following: a)

randomly select α% of the training data, acquire the labels and

train an initial model; b) use the learned model to predict the un-

labeled data, select the M most uncertain samples for labelling;

c) retrain the model using all labeled data. If the number of la-

beled samples reaches the target amount, stop, else go to step

b). We used α = 1 and M = 100 in the experiments, and the

average per-frame log-likelihood was used as the uncertainty

measurement.

For our submodular selection method, HMMs with 16-

component GMMs were obtained by unsupervised training us-

ing all the unlabeled data. This model was used as the genera-

tive model for the Fisher score using gmtkKernel, a GMTK

[28] DBN implementation of Fisher kernels. The negative ℓ1
norm was used to construct the graph (we also tested other

measures which had similar results). The relative PER im-

provements over the average of the 100 random experiments

are shown in Figure 1. As we can see, uncertainty sampling

achieves improvements over random sampling in general, but

when the target percentage number is small (i.e., 2.5% and 5%),

which is usually the case in real-world applications, it performs

similarly to random selection since the model used for the un-

certainty measurement is of low quality. On the other hand, sub-

modular data selection outperforms both random selection and



     0%

     2%

     4%

     6%

     8%

     10%

     12%

     14%

2.5 5 10 20 30 40 50 60 70 80 90
Percentage(%) of the training data 

R
e
la

ti
v
e
 P

E
R

 i
m

p
r
o

v
m

e
n

t

Facility location obj. with L1

Graph cut obj. with L1

Uncertainty sampling
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rate of random selection. With initial model scenario.

uncertainty sampling, especially when the percentage is small.

This implies that even a model trained without any labeling in-

formation works quite well for our approach. In other words,

the submodular data selection approach proposed here is quite

robust to the scenario where no initial “boot” model is available.

Our second scenario is when an initial model is available

to help the data selection. Such a model should have reason-

able quality. In our experiments, we assume a very high quality

initial model to strongly contrast with our first scenario – an

initial model with 16-component GMM-HMMs was trained on

all the labeled TIMIT data, which was then used in the uncer-

tainty sampling approach, and also in the submodular selection

method as the generative model. The results are shown in Fig-

ure 2 — with a better quality initial model, uncertainty sampling

performs better when selecting small percentages of the data but

not necessarily with more data (presumably due to its selection

of unrepresentative outliers). Submodular data selection also

performs better in general with a better quality initial model.

In particular, more than 12% relative improvement over ran-

dom selection is achieved when selecting 2.5% of the data. And

again, submodular selection outperforms both random sampling

and uncertainty sampling. Also, notice that there are only rel-

atively minor performance drops in our approach when shift-

ing from a supervised trained initial model to an unsupervised

trained initial model, illustrating yet again that submodular se-

lection seems robust to the quality of the initial model.
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